Information on Result #1297247

Linear OA(2124, 304, F2, 28) (dual of [304, 180, 29]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(2121, 299, F2, 29) (dual of [299, 178, 30]-code), using
    • construction XX applied to C1 = C([251,20]), C2 = C([0,24]), C3 = C1 + C2 = C([0,20]), and C∩ = C1 ∩ C2 = C([251,24]) [i] based on
      1. linear OA(293, 255, F2, 25) (dual of [255, 162, 26]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,20}, and designed minimum distance d ≥ |I|+1 = 26 [i]
      2. linear OA(293, 255, F2, 25) (dual of [255, 162, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
      3. linear OA(2109, 255, F2, 29) (dual of [255, 146, 30]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−4,−3,…,24}, and designed minimum distance d ≥ |I|+1 = 30 [i]
      4. linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
      5. linear OA(26, 22, F2, 3) (dual of [22, 16, 4]-code or 22-cap in PG(5,2)), using
      6. linear OA(26, 22, F2, 3) (dual of [22, 16, 4]-code or 22-cap in PG(5,2)) (see above)
  2. linear OA(2121, 301, F2, 26) (dual of [301, 180, 27]-code), using Gilbert–VarÅ¡amov bound and bm = 2121 > Vbs−1(k−1) = 2 146897 010422 463915 699968 006884 692498 [i]
  3. linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.