Information on Result #1297511
Linear OA(2221, 579, F2, 46) (dual of [579, 358, 47]-code), using construction X with Varšamov bound based on
- linear OA(2217, 572, F2, 47) (dual of [572, 355, 48]-code), using
- adding a parity check bit [i] based on linear OA(2216, 571, F2, 46) (dual of [571, 355, 47]-code), using
- construction XX applied to C1 = C([505,36]), C2 = C([0,40]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([505,40]) [i] based on
- linear OA(2181, 511, F2, 43) (dual of [511, 330, 44]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,36}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(2172, 511, F2, 41) (dual of [511, 339, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(2199, 511, F2, 47) (dual of [511, 312, 48]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,40}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(2154, 511, F2, 37) (dual of [511, 357, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(211, 36, F2, 4) (dual of [36, 25, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(211, 44, F2, 4) (dual of [44, 33, 5]-code), using
- linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using
- discarding factors / shortening the dual code based on linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
- construction XX applied to C1 = C([505,36]), C2 = C([0,40]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([505,40]) [i] based on
- adding a parity check bit [i] based on linear OA(2216, 571, F2, 46) (dual of [571, 355, 47]-code), using
- linear OA(2217, 575, F2, 44) (dual of [575, 358, 45]-code), using Gilbert–Varšamov bound and bm = 2217 > Vbs−1(k−1) = 154116 340219 581781 636144 140872 008172 189628 844820 540447 404878 188078 [i]
- linear OA(21, 4, F2, 1) (dual of [4, 3, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2222, 580, F2, 47) (dual of [580, 358, 48]-code) | [i] | Adding a Parity Check Bit |