Information on Result #1298108

Linear OA(375, 2208, F3, 15) (dual of [2208, 2133, 16]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(372, 2204, F3, 15) (dual of [2204, 2132, 16]-code), using
    • construction X4 applied to C([0,7]) ⊂ C([0,6]) [i] based on
      1. linear OA(371, 2188, F3, 15) (dual of [2188, 2117, 16]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,7], and minimum distance d ≥ |{−7,−6,…,7}|+1 = 16 (BCH-bound) [i]
      2. linear OA(357, 2188, F3, 13) (dual of [2188, 2131, 14]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,6], and minimum distance d ≥ |{−6,−5,…,6}|+1 = 14 (BCH-bound) [i]
      3. linear OA(315, 16, F3, 15) (dual of [16, 1, 16]-code or 16-arc in PG(14,3)), using
      4. linear OA(31, 16, F3, 1) (dual of [16, 15, 2]-code), using
  2. linear OA(372, 2205, F3, 12) (dual of [2205, 2133, 13]-code), using Gilbert–VarÅ¡amov bound and bm = 372 > Vbs−1(k−1) = 299 045064 748967 810064 957561 358641 [i]
  3. linear OA(32, 3, F3, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,3)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(375, 1104, F3, 2, 15) (dual of [(1104, 2), 2133, 16]-NRT-code) [i]OOA Folding
2Linear OOA(375, 736, F3, 3, 15) (dual of [(736, 3), 2133, 16]-NRT-code) [i]