Information on Result #1298138

Linear OA(378, 270, F3, 22) (dual of [270, 192, 23]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(377, 268, F3, 22) (dual of [268, 191, 23]-code), using
    • construction XX applied to C1 = C([239,15]), C2 = C([0,18]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([239,18]) [i] based on
      1. linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,15}, and designed minimum distance d ≥ |I|+1 = 20 [i]
      2. linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
      3. linear OA(371, 242, F3, 22) (dual of [242, 171, 23]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
      4. linear OA(351, 242, F3, 16) (dual of [242, 191, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
      5. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using
      6. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code) (see above)
  2. linear OA(377, 269, F3, 21) (dual of [269, 192, 22]-code), using Gilbert–VarÅ¡amov bound and bm = 377 > Vbs−1(k−1) = 793021 617143 187563 158635 747326 152689 [i]
  3. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.