Information on Result #1298186

Linear OA(3105, 126, F3, 50) (dual of [126, 21, 51]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(387, 103, F3, 50) (dual of [103, 16, 51]-code), using
    • construction XX applied to Ce(49) ⊂ Ce(40) ⊂ Ce(39) [i] based on
      1. linear OA(374, 81, F3, 50) (dual of [81, 7, 51]-code), using an extension Ce(49) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
      2. linear OA(366, 81, F3, 41) (dual of [81, 15, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
      3. linear OA(365, 81, F3, 40) (dual of [81, 16, 41]-code), using an extension Ce(39) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
      4. linear OA(312, 21, F3, 8) (dual of [21, 9, 9]-code), using
      5. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
  2. linear OA(387, 108, F3, 40) (dual of [108, 21, 41]-code), using Gilbert–VarÅ¡amov bound and bm = 387 > Vbs−1(k−1) = 184721 699221 236106 132571 908350 752320 473723 [i]
  3. linear OA(313, 18, F3, 9) (dual of [18, 5, 10]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.