Information on Result #1298439

Linear OA(3129, 150, F3, 63) (dual of [150, 21, 64]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(3113, 129, F3, 64) (dual of [129, 16, 65]-code), using
    • construction XX applied to C1 = C([0,60]), C2 = C([1,66]), C3 = C1 + C2 = C([1,60]), and C∩ = C1 ∩ C2 = C([0,66]) [i] based on
      1. linear OA(3106, 121, F3, 62) (dual of [121, 15, 63]-code), using the expurgated narrow-sense BCH-code C(I) with length 121 | 35−1, defining interval I = [0,60], and minimum distance d ≥ |{−1,0,…,60}|+1 = 63 (BCH-bound) [i]
      2. linear OA(3110, 121, F3, 66) (dual of [121, 11, 67]-code), using the narrow-sense BCH-code C(I) with length 121 | 35−1, defining interval I = [1,66], and designed minimum distance d ≥ |I|+1 = 67 [i]
      3. linear OA(3111, 121, F3, 68) (dual of [121, 10, 69]-code), using the expurgated narrow-sense BCH-code C(I) with length 121 | 35−1, defining interval I = [0,66], and minimum distance d ≥ |{−1,0,…,66}|+1 = 69 (BCH-bound) [i]
      4. linear OA(3105, 121, F3, 60) (dual of [121, 16, 61]-code), using the narrow-sense BCH-code C(I) with length 121 | 35−1, defining interval I = [1,60], and designed minimum distance d ≥ |I|+1 = 61 [i]
      5. linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
      6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using
  2. linear OA(3113, 134, F3, 54) (dual of [134, 21, 55]-code), using Gilbert–VarÅ¡amov bound and bm = 3113 > Vbs−1(k−1) = 646280 888967 010292 790953 680633 118560 515576 687956 971251 [i]
  3. linear OA(311, 16, F3, 8) (dual of [16, 5, 9]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.