Information on Result #1298530
Linear OA(3126, 531473, F3, 15) (dual of [531473, 531347, 16]-code), using construction X with Varšamov bound based on
- linear OA(3122, 531468, F3, 15) (dual of [531468, 531346, 16]-code), using
- construction X4 applied to C([0,7]) ⊂ C([0,6]) [i] based on
- linear OA(3121, 531442, F3, 15) (dual of [531442, 531321, 16]-code), using the expurgated narrow-sense BCH-code C(I) with length 531442 | 324−1, defining interval I = [0,7], and minimum distance d ≥ |{−7,−6,…,7}|+1 = 16 (BCH-bound) [i]
- linear OA(397, 531442, F3, 13) (dual of [531442, 531345, 14]-code), using the expurgated narrow-sense BCH-code C(I) with length 531442 | 324−1, defining interval I = [0,6], and minimum distance d ≥ |{−6,−5,…,6}|+1 = 14 (BCH-bound) [i]
- linear OA(325, 26, F3, 25) (dual of [26, 1, 26]-code or 26-arc in PG(24,3)), using
- dual of repetition code with length 26 [i]
- linear OA(31, 26, F3, 1) (dual of [26, 25, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X4 applied to C([0,7]) ⊂ C([0,6]) [i] based on
- linear OA(3122, 531469, F3, 11) (dual of [531469, 531347, 12]-code), using Gilbert–Varšamov bound and bm = 3122 > Vbs−1(k−1) = 507312 358797 323606 098175 605521 991161 472993 845203 393521 [i]
- linear OA(33, 4, F3, 3) (dual of [4, 1, 4]-code or 4-arc in PG(2,3) or 4-cap in PG(2,3)), using
- dual of repetition code with length 4 [i]
- oval in PG(2, 3) [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.