Information on Result #1298605

Linear OA(3135, 768, F3, 32) (dual of [768, 633, 33]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(3132, 762, F3, 32) (dual of [762, 630, 33]-code), using
    • construction XX applied to C1 = C([334,364]), C2 = C([340,365]), C3 = C1 + C2 = C([340,364]), and C∩ = C1 ∩ C2 = C([334,365]) [i] based on
      1. linear OA(3118, 728, F3, 31) (dual of [728, 610, 32]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {334,335,…,364}, and designed minimum distance d ≥ |I|+1 = 32 [i]
      2. linear OA(3103, 728, F3, 26) (dual of [728, 625, 27]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {340,341,…,365}, and designed minimum distance d ≥ |I|+1 = 27 [i]
      3. linear OA(3124, 728, F3, 32) (dual of [728, 604, 33]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {334,335,…,365}, and designed minimum distance d ≥ |I|+1 = 33 [i]
      4. linear OA(397, 728, F3, 25) (dual of [728, 631, 26]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {340,341,…,364}, and designed minimum distance d ≥ |I|+1 = 26 [i]
      5. linear OA(38, 28, F3, 5) (dual of [28, 20, 6]-code), using
      6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using
  2. linear OA(3132, 765, F3, 31) (dual of [765, 633, 32]-code), using Gilbert–VarÅ¡amov bound and bm = 3132 > Vbs−1(k−1) = 721 885546 343123 023024 329550 122289 432178 161228 619120 291725 141169 [i]
  3. linear OA(30, 3, F3, 0) (dual of [3, 3, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.