Information on Result #1299207
Linear OA(3200, 2240, F3, 40) (dual of [2240, 2040, 41]-code), using construction X with Varšamov bound based on
- linear OA(3199, 2238, F3, 40) (dual of [2238, 2039, 41]-code), using
- construction X applied to Ce(39) ⊂ Ce(31) [i] based on
- linear OA(3183, 2187, F3, 40) (dual of [2187, 2004, 41]-code), using an extension Ce(39) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3148, 2187, F3, 32) (dual of [2187, 2039, 33]-code), using an extension Ce(31) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,31], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(316, 51, F3, 7) (dual of [51, 35, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(316, 82, F3, 7) (dual of [82, 66, 8]-code), using
- construction X applied to Ce(39) ⊂ Ce(31) [i] based on
- linear OA(3199, 2239, F3, 39) (dual of [2239, 2040, 40]-code), using Gilbert–Varšamov bound and bm = 3199 > Vbs−1(k−1) = 7618 650088 918747 327286 523892 314366 722555 686354 563901 073131 237564 906949 986291 846300 576302 460217 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.