Information on Result #1299790

Linear OA(447, 84, F4, 21) (dual of [84, 37, 22]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(446, 82, F4, 21) (dual of [82, 36, 22]-code), using
    • construction XX applied to C1 = C([1,15]), C2 = C([0,11]), C3 = C1 + C2 = C([1,11]), and C∩ = C1 ∩ C2 = C([0,15]) [i] based on
      1. linear OA(436, 63, F4, 20) (dual of [63, 27, 21]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 21 [i]
      2. linear OA(428, 63, F4, 13) (dual of [63, 35, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 14 [i]
      3. linear OA(437, 63, F4, 21) (dual of [63, 26, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 22 [i]
      4. linear OA(427, 63, F4, 12) (dual of [63, 36, 13]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
      5. linear OA(49, 18, F4, 7) (dual of [18, 9, 8]-code), using
      6. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
  2. linear OA(446, 83, F4, 20) (dual of [83, 37, 21]-code), using Gilbert–VarÅ¡amov bound and bm = 446 > Vbs−1(k−1) = 2540 438780 791481 176319 055904 [i]
  3. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code) (see above)

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.