Information on Result #1299792

Linear OA(448, 271, F4, 15) (dual of [271, 223, 16]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(447, 269, F4, 15) (dual of [269, 222, 16]-code), using
    • construction XX applied to C1 = C([253,10]), C2 = C([0,12]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([253,12]) [i] based on
      1. linear OA(441, 255, F4, 13) (dual of [255, 214, 14]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−2,−1,…,10}, and designed minimum distance d ≥ |I|+1 = 14 [i]
      2. linear OA(437, 255, F4, 13) (dual of [255, 218, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
      3. linear OA(445, 255, F4, 15) (dual of [255, 210, 16]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−2,−1,…,12}, and designed minimum distance d ≥ |I|+1 = 16 [i]
      4. linear OA(433, 255, F4, 11) (dual of [255, 222, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
      5. linear OA(41, 9, F4, 1) (dual of [9, 8, 2]-code), using
      6. linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
  2. linear OA(447, 270, F4, 14) (dual of [270, 223, 15]-code), using Gilbert–VarÅ¡amov bound and bm = 447 > Vbs−1(k−1) = 7490 730553 786992 222952 000000 [i]
  3. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.