Information on Result #1299806

Linear OA(449, 1043, F4, 12) (dual of [1043, 994, 13]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(448, 1041, F4, 12) (dual of [1041, 993, 13]-code), using
    • construction XX applied to C1 = C([1022,8]), C2 = C([1,10]), C3 = C1 + C2 = C([1,8]), and C∩ = C1 ∩ C2 = C([1022,10]) [i] based on
      1. linear OA(436, 1023, F4, 10) (dual of [1023, 987, 11]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−1,0,…,8}, and designed minimum distance d ≥ |I|+1 = 11 [i]
      2. linear OA(440, 1023, F4, 10) (dual of [1023, 983, 11]-code), using the primitive narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
      3. linear OA(446, 1023, F4, 12) (dual of [1023, 977, 13]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−1,0,…,10}, and designed minimum distance d ≥ |I|+1 = 13 [i]
      4. linear OA(430, 1023, F4, 8) (dual of [1023, 993, 9]-code), using the primitive narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [1,8], and designed minimum distance d ≥ |I|+1 = 9 [i]
      5. linear OA(41, 7, F4, 1) (dual of [7, 6, 2]-code), using
      6. linear OA(41, 11, F4, 1) (dual of [11, 10, 2]-code), using
  2. linear OA(448, 1042, F4, 11) (dual of [1042, 994, 12]-code), using Gilbert–VarÅ¡amov bound and bm = 448 > Vbs−1(k−1) = 23363 100326 564045 120221 266772 [i]
  3. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.