Information on Result #1299882
Linear OA(465, 274, F4, 21) (dual of [274, 209, 22]-code), using construction X with Varšamov bound based on
- linear OA(464, 272, F4, 21) (dual of [272, 208, 22]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(463, 270, F4, 21) (dual of [270, 207, 22]-code), using
- construction X applied to Ce(20) ⊂ Ce(16) [i] based on
- linear OA(459, 256, F4, 21) (dual of [256, 197, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(449, 256, F4, 17) (dual of [256, 207, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(44, 14, F4, 3) (dual of [14, 10, 4]-code or 14-cap in PG(3,4)), using
- construction X applied to Ce(20) ⊂ Ce(16) [i] based on
- linear OA(463, 271, F4, 20) (dual of [271, 208, 21]-code), using Gilbert–Varšamov bound and bm = 463 > Vbs−1(k−1) = 80 463562 179171 669857 598196 774122 071200 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(463, 270, F4, 21) (dual of [270, 207, 22]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(464, 273, F4, 20) (dual of [273, 209, 21]-code), using Gilbert–Varšamov bound and bm = 464 > Vbs−1(k−1) = 93 009756 381909 954710 392037 923087 734160 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.