Information on Result #1299901

Linear OA(470, 271, F4, 23) (dual of [271, 201, 24]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(469, 269, F4, 23) (dual of [269, 200, 24]-code), using
    • construction XX applied to C1 = C([253,18]), C2 = C([0,20]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([253,20]) [i] based on
      1. linear OA(463, 255, F4, 21) (dual of [255, 192, 22]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
      2. linear OA(459, 255, F4, 21) (dual of [255, 196, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
      3. linear OA(467, 255, F4, 23) (dual of [255, 188, 24]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
      4. linear OA(455, 255, F4, 19) (dual of [255, 200, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
      5. linear OA(41, 9, F4, 1) (dual of [9, 8, 2]-code), using
      6. linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
  2. linear OA(469, 270, F4, 22) (dual of [270, 201, 23]-code), using Gilbert–VarÅ¡amov bound and bm = 469 > Vbs−1(k−1) = 100085 014230 969640 725515 660633 170002 444544 [i]
  3. linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.