Information on Result #1299909
Linear OA(477, 262170, F4, 11) (dual of [262170, 262093, 12]-code), using construction X with Varšamov bound based on
- linear OA(474, 262165, F4, 11) (dual of [262165, 262091, 12]-code), using
- construction X4 applied to C([0,5]) ⊂ C([0,4]) [i] based on
- linear OA(473, 262145, F4, 11) (dual of [262145, 262072, 12]-code), using the expurgated narrow-sense BCH-code C(I) with length 262145 | 418−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- linear OA(455, 262145, F4, 9) (dual of [262145, 262090, 10]-code), using the expurgated narrow-sense BCH-code C(I) with length 262145 | 418−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- linear OA(419, 20, F4, 19) (dual of [20, 1, 20]-code or 20-arc in PG(18,4)), using
- dual of repetition code with length 20 [i]
- linear OA(41, 20, F4, 1) (dual of [20, 19, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X4 applied to C([0,5]) ⊂ C([0,4]) [i] based on
- linear OA(474, 262167, F4, 9) (dual of [262167, 262093, 10]-code), using Gilbert–Varšamov bound and bm = 474 > Vbs−1(k−1) = 3 630935 136401 041790 920313 924870 283101 218210 [i]
- linear OA(41, 3, F4, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(477, 131085, F4, 2, 11) (dual of [(131085, 2), 262093, 12]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(477, 87390, F4, 3, 11) (dual of [(87390, 3), 262093, 12]-NRT-code) | [i] |