Information on Result #1300375
Linear OA(4161, 199, F4, 84) (dual of [199, 38, 85]-code), using construction X with Varšamov bound based on
- linear OA(4160, 197, F4, 84) (dual of [197, 37, 85]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4159, 195, F4, 84) (dual of [195, 36, 85]-code), using
- 3 times truncation [i] based on linear OA(4162, 198, F4, 87) (dual of [198, 36, 88]-code), using
- concatenation of two codes [i] based on
- linear OA(6421, 33, F64, 21) (dual of [33, 12, 22]-code or 33-arc in PG(20,64)), using
- discarding factors / shortening the dual code based on linear OA(6421, 64, F64, 21) (dual of [64, 43, 22]-code or 64-arc in PG(20,64)), using
- Reed–Solomon code RS(43,64) [i]
- discarding factors / shortening the dual code based on linear OA(6421, 64, F64, 21) (dual of [64, 43, 22]-code or 64-arc in PG(20,64)), using
- linear OA(43, 6, F4, 3) (dual of [6, 3, 4]-code or 6-arc in PG(2,4) or 6-cap in PG(2,4)), using
- linear OA(6421, 33, F64, 21) (dual of [33, 12, 22]-code or 33-arc in PG(20,64)), using
- concatenation of two codes [i] based on
- 3 times truncation [i] based on linear OA(4162, 198, F4, 87) (dual of [198, 36, 88]-code), using
- linear OA(4159, 196, F4, 83) (dual of [196, 37, 84]-code), using Gilbert–Varšamov bound and bm = 4159 > Vbs−1(k−1) = 426749 007552 338015 636166 674277 593205 080586 344607 084583 903146 003423 605154 737334 858402 163517 118856 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(4159, 195, F4, 84) (dual of [195, 36, 85]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4160, 198, F4, 83) (dual of [198, 38, 84]-code), using Gilbert–Varšamov bound and bm = 4160 > Vbs−1(k−1) = 1 250205 379343 123782 722949 332110 987947 957006 678461 599196 649569 426022 400958 780156 365028 447989 220496 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.