Information on Result #1300720
Linear OA(4199, 16422, F4, 36) (dual of [16422, 16223, 37]-code), using construction X with Varšamov bound based on
- linear OA(4197, 16419, F4, 36) (dual of [16419, 16222, 37]-code), using
- construction X applied to Ce(36) ⊂ Ce(30) [i] based on
- linear OA(4190, 16384, F4, 37) (dual of [16384, 16194, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(4162, 16384, F4, 31) (dual of [16384, 16222, 32]-code), using an extension Ce(30) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(47, 35, F4, 4) (dual of [35, 28, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(47, 43, F4, 4) (dual of [43, 36, 5]-code), using
- construction X applied to Ce(36) ⊂ Ce(30) [i] based on
- linear OA(4197, 16420, F4, 34) (dual of [16420, 16223, 35]-code), using Gilbert–Varšamov bound and bm = 4197 > Vbs−1(k−1) = 7926 351429 828253 870096 625599 483933 130797 422760 173450 176026 072220 428197 934230 320002 551645 042429 950220 936857 127294 041002 [i]
- linear OA(41, 2, F4, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.