Information on Result #1300807
Linear OA(4212, 65609, F4, 32) (dual of [65609, 65397, 33]-code), using construction X with Varšamov bound based on
- linear OA(4206, 65598, F4, 32) (dual of [65598, 65392, 33]-code), using
- construction X applied to C([0,16]) ⊂ C([0,12]) [i] based on
- linear OA(4193, 65537, F4, 33) (dual of [65537, 65344, 34]-code), using the expurgated narrow-sense BCH-code C(I) with length 65537 | 416−1, defining interval I = [0,16], and minimum distance d ≥ |{−16,−15,…,16}|+1 = 34 (BCH-bound) [i]
- linear OA(4145, 65537, F4, 25) (dual of [65537, 65392, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 65537 | 416−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(413, 61, F4, 6) (dual of [61, 48, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
- discarding factors / shortening the dual code based on linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using
- construction X applied to C([0,16]) ⊂ C([0,12]) [i] based on
- linear OA(4206, 65603, F4, 30) (dual of [65603, 65397, 31]-code), using Gilbert–Varšamov bound and bm = 4206 > Vbs−1(k−1) = 378 397921 751964 651348 899388 287744 607655 767786 411751 115388 309933 159104 377074 291598 204666 954655 446904 378156 291365 296206 362048 [i]
- linear OA(41, 6, F4, 1) (dual of [6, 5, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.