Information on Result #1301329

Linear OA(548, 641, F5, 14) (dual of [641, 593, 15]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(547, 639, F5, 14) (dual of [639, 592, 15]-code), using
    • construction XX applied to C1 = C([623,10]), C2 = C([1,12]), C3 = C1 + C2 = C([1,10]), and C∩ = C1 ∩ C2 = C([623,12]) [i] based on
      1. linear OA(537, 624, F5, 12) (dual of [624, 587, 13]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−1,0,…,10}, and designed minimum distance d ≥ |I|+1 = 13 [i]
      2. linear OA(540, 624, F5, 12) (dual of [624, 584, 13]-code), using the primitive narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
      3. linear OA(545, 624, F5, 14) (dual of [624, 579, 15]-code), using the primitive BCH-code C(I) with length 624 = 54−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
      4. linear OA(532, 624, F5, 10) (dual of [624, 592, 11]-code), using the primitive narrow-sense BCH-code C(I) with length 624 = 54−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
      5. linear OA(51, 6, F5, 1) (dual of [6, 5, 2]-code), using
      6. linear OA(51, 9, F5, 1) (dual of [9, 8, 2]-code), using
  2. linear OA(547, 640, F5, 13) (dual of [640, 593, 14]-code), using Gilbert–VarÅ¡amov bound and bm = 547 > Vbs−1(k−1) = 147 008946 296392 533562 565956 602573 [i]
  3. linear OA(50, 1, F5, 0) (dual of [1, 1, 1]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.