Information on Result #1301581
Linear OA(591, 121, F5, 50) (dual of [121, 30, 51]-code), using construction X with Varšamov bound based on
- linear OA(590, 119, F5, 50) (dual of [119, 29, 51]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(586, 113, F5, 50) (dual of [113, 27, 51]-code), using
- 13 times truncation [i] based on linear OA(599, 126, F5, 63) (dual of [126, 27, 64]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 126 | 56−1, defining interval I = [0,31], and minimum distance d ≥ |{−31,−30,…,31}|+1 = 64 (BCH-bound) [i]
- 13 times truncation [i] based on linear OA(599, 126, F5, 63) (dual of [126, 27, 64]-code), using
- linear OA(586, 115, F5, 47) (dual of [115, 29, 48]-code), using Gilbert–Varšamov bound and bm = 586 > Vbs−1(k−1) = 1 105983 504725 650710 879905 494496 677487 505928 148522 094671 901785 [i]
- linear OA(52, 4, F5, 2) (dual of [4, 2, 3]-code or 4-arc in PG(1,5)), using
- discarding factors / shortening the dual code based on linear OA(52, 5, F5, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,5)), using
- Reed–Solomon code RS(3,5) [i]
- discarding factors / shortening the dual code based on linear OA(52, 5, F5, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,5)), using
- linear OA(586, 113, F5, 50) (dual of [113, 27, 51]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(590, 120, F5, 49) (dual of [120, 30, 50]-code), using Gilbert–Varšamov bound and bm = 590 > Vbs−1(k−1) = 501 324723 821709 717743 204052 211337 799799 117493 692792 815717 843565 [i]
- linear OA(50, 1, F5, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.