Information on Result #1301598
Linear OA(594, 3140, F5, 23) (dual of [3140, 3046, 24]-code), using construction X with Varšamov bound based on
- linear OA(592, 3137, F5, 23) (dual of [3137, 3045, 24]-code), using
- construction X applied to C([0,11]) ⊂ C([0,10]) [i] based on
- linear OA(591, 3126, F5, 23) (dual of [3126, 3035, 24]-code), using the expurgated narrow-sense BCH-code C(I) with length 3126 | 510−1, defining interval I = [0,11], and minimum distance d ≥ |{−11,−10,…,11}|+1 = 24 (BCH-bound) [i]
- linear OA(581, 3126, F5, 21) (dual of [3126, 3045, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 3126 | 510−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound) [i]
- linear OA(51, 11, F5, 1) (dual of [11, 10, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to C([0,11]) ⊂ C([0,10]) [i] based on
- linear OA(592, 3138, F5, 21) (dual of [3138, 3046, 22]-code), using Gilbert–Varšamov bound and bm = 592 > Vbs−1(k−1) = 3628 304667 991271 204138 833184 635460 075950 321888 517093 137257 573125 [i]
- linear OA(51, 2, F5, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(594, 1570, F5, 2, 23) (dual of [(1570, 2), 3046, 24]-NRT-code) | [i] | OOA Folding |