Information on Result #1302170
Linear OA(774, 85, F7, 51) (dual of [85, 11, 52]-code), using construction X with Varšamov bound based on
- linear OA(773, 83, F7, 51) (dual of [83, 10, 52]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(768, 76, F7, 51) (dual of [76, 8, 52]-code), using
- 4 times truncation [i] based on linear OA(772, 80, F7, 55) (dual of [80, 8, 56]-code), using
- linear OA(768, 78, F7, 47) (dual of [78, 10, 48]-code), using Gilbert–Varšamov bound and bm = 768 > Vbs−1(k−1) = 2619 030375 884646 516970 607290 004551 829187 323214 220132 119271 [i]
- linear OA(73, 5, F7, 3) (dual of [5, 2, 4]-code or 5-arc in PG(2,7) or 5-cap in PG(2,7)), using
- discarding factors / shortening the dual code based on linear OA(73, 7, F7, 3) (dual of [7, 4, 4]-code or 7-arc in PG(2,7) or 7-cap in PG(2,7)), using
- Reed–Solomon code RS(4,7) [i]
- discarding factors / shortening the dual code based on linear OA(73, 7, F7, 3) (dual of [7, 4, 4]-code or 7-arc in PG(2,7) or 7-cap in PG(2,7)), using
- linear OA(768, 76, F7, 51) (dual of [76, 8, 52]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(773, 84, F7, 50) (dual of [84, 11, 51]-code), using Gilbert–Varšamov bound and bm = 773 > Vbs−1(k−1) = 38 443376 224971 414135 388794 084919 272537 715136 001226 757714 035159 [i]
- linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.