Information on Result #1302703
Linear OA(8107, 262187, F8, 19) (dual of [262187, 262080, 20]-code), using construction X with Varšamov bound based on
- linear OA(8104, 262181, F8, 19) (dual of [262181, 262077, 20]-code), using
- construction X applied to Ce(18) ⊂ Ce(12) [i] based on
- linear OA(897, 262144, F8, 19) (dual of [262144, 262047, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(867, 262144, F8, 13) (dual of [262144, 262077, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(87, 37, F8, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(18) ⊂ Ce(12) [i] based on
- linear OA(8104, 262184, F8, 18) (dual of [262184, 262080, 19]-code), using Gilbert–Varšamov bound and bm = 8104 > Vbs−1(k−1) = 85 438554 161842 786595 226331 773976 760616 603480 199678 642166 164274 009768 746737 933753 897370 975676 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.