Information on Result #1302804
Linear OA(8123, 2097200, F8, 19) (dual of [2097200, 2097077, 20]-code), using construction X with Varšamov bound based on
- linear OA(8120, 2097194, F8, 19) (dual of [2097194, 2097074, 20]-code), using
- construction X applied to Ce(18) ⊂ Ce(12) [i] based on
- linear OA(8113, 2097152, F8, 19) (dual of [2097152, 2097039, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 87−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(878, 2097152, F8, 13) (dual of [2097152, 2097074, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 87−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(87, 42, F8, 5) (dual of [42, 35, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(18) ⊂ Ce(12) [i] based on
- linear OA(8120, 2097197, F8, 18) (dual of [2097197, 2097077, 19]-code), using Gilbert–Varšamov bound and bm = 8120 > Vbs−1(k−1) = 192058 643278 976957 579314 800034 148247 095490 856387 105361 437113 688726 499011 230571 874891 704338 886670 565244 322250 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.