Information on Result #1302887
Linear OA(8139, 262193, F8, 25) (dual of [262193, 262054, 26]-code), using construction X with Varšamov bound based on
- linear OA(8138, 262191, F8, 25) (dual of [262191, 262053, 26]-code), using
- construction X applied to Ce(24) ⊂ Ce(17) [i] based on
- linear OA(8127, 262144, F8, 25) (dual of [262144, 262017, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(891, 262144, F8, 18) (dual of [262144, 262053, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(811, 47, F8, 6) (dual of [47, 36, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(811, 63, F8, 6) (dual of [63, 52, 7]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 82−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
- discarding factors / shortening the dual code based on linear OA(811, 63, F8, 6) (dual of [63, 52, 7]-code), using
- construction X applied to Ce(24) ⊂ Ce(17) [i] based on
- linear OA(8138, 262192, F8, 24) (dual of [262192, 262054, 25]-code), using Gilbert–Varšamov bound and bm = 8138 > Vbs−1(k−1) = 44 932004 279996 575798 131051 079434 431457 426472 181294 838607 546203 418810 876778 857997 330886 763884 848676 155637 964045 864718 642576 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.