Information on Result #1303001
Linear OA(8161, 262187, F8, 29) (dual of [262187, 262026, 30]-code), using construction X with Varšamov bound based on
- linear OA(8158, 262181, F8, 29) (dual of [262181, 262023, 30]-code), using
- construction X applied to Ce(28) ⊂ Ce(22) [i] based on
- linear OA(8151, 262144, F8, 29) (dual of [262144, 261993, 30]-code), using an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(8121, 262144, F8, 23) (dual of [262144, 262023, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(87, 37, F8, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(28) ⊂ Ce(22) [i] based on
- linear OA(8158, 262184, F8, 28) (dual of [262184, 262026, 29]-code), using Gilbert–Varšamov bound and bm = 8158 > Vbs−1(k−1) = 1208 958836 430796 265703 797707 485060 884866 359470 890057 492613 391386 202555 102567 632455 376267 899925 609783 237457 814801 859028 106116 754321 378347 213712 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.