Information on Result #1303385
Linear OA(9106, 59076, F9, 23) (dual of [59076, 58970, 24]-code), using construction X with Varšamov bound based on
- linear OA(9105, 59074, F9, 23) (dual of [59074, 58969, 24]-code), using
- construction X applied to C([0,11]) ⊂ C([0,9]) [i] based on
- linear OA(9101, 59050, F9, 23) (dual of [59050, 58949, 24]-code), using the expurgated narrow-sense BCH-code C(I) with length 59050 | 910−1, defining interval I = [0,11], and minimum distance d ≥ |{−11,−10,…,11}|+1 = 24 (BCH-bound) [i]
- linear OA(981, 59050, F9, 19) (dual of [59050, 58969, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 59050 | 910−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- linear OA(94, 24, F9, 3) (dual of [24, 20, 4]-code or 24-cap in PG(3,9)), using
- construction X applied to C([0,11]) ⊂ C([0,9]) [i] based on
- linear OA(9105, 59075, F9, 22) (dual of [59075, 58970, 23]-code), using Gilbert–Varšamov bound and bm = 9105 > Vbs−1(k−1) = 2846 721858 803119 473443 012762 248169 925587 196818 315831 220831 628821 290239 666050 333325 403188 436983 823953 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9106, 59076, F9, 2, 23) (dual of [(59076, 2), 118046, 24]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9106, 59076, F9, 3, 23) (dual of [(59076, 3), 177122, 24]-NRT-code) | [i] | ||
3 | Digital (83, 106, 59076)-net over F9 | [i] | ||
4 | Linear OOA(9106, 29538, F9, 2, 23) (dual of [(29538, 2), 58970, 24]-NRT-code) | [i] | OOA Folding |