Information on Result #1303524
Linear OA(9135, 59085, F9, 29) (dual of [59085, 58950, 30]-code), using construction X with Varšamov bound based on
- linear OA(9133, 59081, F9, 29) (dual of [59081, 58948, 30]-code), using
- construction X applied to Ce(28) ⊂ Ce(22) [i] based on
- linear OA(9126, 59049, F9, 29) (dual of [59049, 58923, 30]-code), using an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(9101, 59049, F9, 23) (dual of [59049, 58948, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(97, 32, F9, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(28) ⊂ Ce(22) [i] based on
- linear OA(9133, 59083, F9, 28) (dual of [59083, 58950, 29]-code), using Gilbert–Varšamov bound and bm = 9133 > Vbs−1(k−1) = 148998 287927 989226 991972 955773 729464 730244 908471 274415 905466 341762 972782 788231 299884 548461 877537 378731 148809 737940 701718 567313 [i]
- linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.