Information on Result #1303735
Linear OA(16101, 271, F16, 56) (dual of [271, 170, 57]-code), using construction X with Varšamov bound based on
- linear OA(1699, 268, F16, 56) (dual of [268, 169, 57]-code), using
- construction X applied to C([101,156]) ⊂ C([103,154]) [i] based on
- linear OA(1696, 257, F16, 56) (dual of [257, 161, 57]-code), using the BCH-code C(I) with length 257 | 164−1, defining interval I = {101,102,…,156}, and designed minimum distance d ≥ |I|+1 = 57 [i]
- linear OA(1688, 257, F16, 52) (dual of [257, 169, 53]-code), using the BCH-code C(I) with length 257 | 164−1, defining interval I = {103,104,…,154}, and designed minimum distance d ≥ |I|+1 = 53 [i]
- linear OA(163, 11, F16, 3) (dual of [11, 8, 4]-code or 11-arc in PG(2,16) or 11-cap in PG(2,16)), using
- discarding factors / shortening the dual code based on linear OA(163, 16, F16, 3) (dual of [16, 13, 4]-code or 16-arc in PG(2,16) or 16-cap in PG(2,16)), using
- Reed–Solomon code RS(13,16) [i]
- discarding factors / shortening the dual code based on linear OA(163, 16, F16, 3) (dual of [16, 13, 4]-code or 16-arc in PG(2,16) or 16-cap in PG(2,16)), using
- construction X applied to C([101,156]) ⊂ C([103,154]) [i] based on
- linear OA(1699, 269, F16, 54) (dual of [269, 170, 55]-code), using Gilbert–Varšamov bound and bm = 1699 > Vbs−1(k−1) = 101189 596237 901927 395619 867213 654736 466310 335768 055669 094617 120916 747284 816188 354767 089249 160372 404971 970115 411835 873696 [i]
- linear OA(161, 2, F16, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(161, s, F16, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.