Information on Result #1307621
Linear OA(465, 1058, F4, 16) (dual of [1058, 993, 17]-code), using 21 step Varšamov–Edel lengthening with (ri) = (2, 0, 1, 5 times 0, 1, 12 times 0) based on linear OA(461, 1033, F4, 16) (dual of [1033, 972, 17]-code), using
- construction XX applied to C1 = C([1022,13]), C2 = C([0,14]), C3 = C1 + C2 = C([0,13]), and C∩ = C1 ∩ C2 = C([1022,14]) [i] based on
- linear OA(456, 1023, F4, 15) (dual of [1023, 967, 16]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−1,0,…,13}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(456, 1023, F4, 15) (dual of [1023, 967, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(461, 1023, F4, 16) (dual of [1023, 962, 17]-code), using the primitive BCH-code C(I) with length 1023 = 45−1, defining interval I = {−1,0,…,14}, and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(451, 1023, F4, 14) (dual of [1023, 972, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 45−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(40, 5, F4, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(40, 5, F4, 0) (dual of [5, 5, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(465, 1058, F4, 2, 16) (dual of [(1058, 2), 2051, 17]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(465, 1058, F4, 3, 16) (dual of [(1058, 3), 3109, 17]-NRT-code) | [i] | ||
3 | Digital (49, 65, 1058)-net over F4 | [i] |