Information on Result #1307936
Linear OA(478, 274, F4, 26) (dual of [274, 196, 27]-code), using 8 step Varšamov–Edel lengthening with (ri) = (1, 0, 1, 5 times 0) based on linear OA(476, 264, F4, 26) (dual of [264, 188, 27]-code), using
- construction XX applied to C1 = C([61,85]), C2 = C([63,86]), C3 = C1 + C2 = C([63,85]), and C∩ = C1 ∩ C2 = C([61,86]) [i] based on
- linear OA(471, 255, F4, 25) (dual of [255, 184, 26]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {61,62,…,85}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(471, 255, F4, 24) (dual of [255, 184, 25]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {63,64,…,86}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(475, 255, F4, 26) (dual of [255, 180, 27]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {61,62,…,86}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(467, 255, F4, 23) (dual of [255, 188, 24]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {63,64,…,85}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.