Information on Result #1312310
Linear OA(872, 524, F8, 27) (dual of [524, 452, 28]-code), using 5 step Varšamov–Edel lengthening with (ri) = (2, 4 times 0) based on linear OA(870, 517, F8, 27) (dual of [517, 447, 28]-code), using
- construction XX applied to C1 = C([510,24]), C2 = C([0,25]), C3 = C1 + C2 = C([0,24]), and C∩ = C1 ∩ C2 = C([510,25]) [i] based on
- linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,24}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(867, 511, F8, 26) (dual of [511, 444, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(870, 511, F8, 27) (dual of [511, 441, 28]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,25}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(864, 511, F8, 25) (dual of [511, 447, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.