Information on Result #1314290
Linear OA(16108, 274, F16, 60) (dual of [274, 166, 61]-code), using 11 step Varšamov–Edel lengthening with (ri) = (2, 1, 0, 0, 1, 6 times 0) based on linear OA(16104, 259, F16, 60) (dual of [259, 155, 61]-code), using
- construction XX applied to C1 = C([254,57]), C2 = C([0,58]), C3 = C1 + C2 = C([0,57]), and C∩ = C1 ∩ C2 = C([254,58]) [i] based on
- linear OA(16102, 255, F16, 59) (dual of [255, 153, 60]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,57}, and designed minimum distance d ≥ |I|+1 = 60 [i]
- linear OA(16102, 255, F16, 59) (dual of [255, 153, 60]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,58], and designed minimum distance d ≥ |I|+1 = 60 [i]
- linear OA(16104, 255, F16, 60) (dual of [255, 151, 61]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,58}, and designed minimum distance d ≥ |I|+1 = 61 [i]
- linear OA(16100, 255, F16, 58) (dual of [255, 155, 59]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,57], and designed minimum distance d ≥ |I|+1 = 59 [i]
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(160, s, F16, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.