Information on Result #1314295
Linear OA(16109, 270, F16, 61) (dual of [270, 161, 62]-code), using 8 step Varšamov–Edel lengthening with (ri) = (2, 0, 1, 5 times 0) based on linear OA(16106, 259, F16, 61) (dual of [259, 153, 62]-code), using
- construction XX applied to C1 = C([254,58]), C2 = C([0,59]), C3 = C1 + C2 = C([0,58]), and C∩ = C1 ∩ C2 = C([254,59]) [i] based on
- linear OA(16104, 255, F16, 60) (dual of [255, 151, 61]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,58}, and designed minimum distance d ≥ |I|+1 = 61 [i]
- linear OA(16104, 255, F16, 60) (dual of [255, 151, 61]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,59], and designed minimum distance d ≥ |I|+1 = 61 [i]
- linear OA(16106, 255, F16, 61) (dual of [255, 149, 62]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,59}, and designed minimum distance d ≥ |I|+1 = 62 [i]
- linear OA(16102, 255, F16, 59) (dual of [255, 153, 60]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,58], and designed minimum distance d ≥ |I|+1 = 60 [i]
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(160, s, F16, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.