Information on Result #1314495
Linear OA(2572, 767, F25, 33) (dual of [767, 695, 34]-code), using 129 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 4 times 0, 1, 9 times 0, 1, 20 times 0, 1, 35 times 0, 1, 54 times 0) based on linear OA(2562, 628, F25, 33) (dual of [628, 566, 34]-code), using
- construction XX applied to C1 = C([623,30]), C2 = C([0,31]), C3 = C1 + C2 = C([0,30]), and C∩ = C1 ∩ C2 = C([623,31]) [i] based on
- linear OA(2560, 624, F25, 32) (dual of [624, 564, 33]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(2560, 624, F25, 32) (dual of [624, 564, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(2562, 624, F25, 33) (dual of [624, 562, 34]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2558, 624, F25, 31) (dual of [624, 566, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2572, 767, F25, 2, 33) (dual of [(767, 2), 1462, 34]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Digital (39, 72, 767)-net over F25 | [i] | ||
3 | Linear OOA(2572, 383, F25, 2, 33) (dual of [(383, 2), 694, 34]-NRT-code) | [i] | OOA Folding |