Information on Result #1314831
Linear OA(2756, 850, F27, 25) (dual of [850, 794, 26]-code), using 111 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 0, 1, 9 times 0, 1, 29 times 0, 1, 66 times 0) based on linear OA(2749, 732, F27, 25) (dual of [732, 683, 26]-code), using
- construction XX applied to C1 = C([727,22]), C2 = C([0,23]), C3 = C1 + C2 = C([0,22]), and C∩ = C1 ∩ C2 = C([727,23]) [i] based on
- linear OA(2747, 728, F27, 24) (dual of [728, 681, 25]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,22}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(2747, 728, F27, 24) (dual of [728, 681, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(2749, 728, F27, 25) (dual of [728, 679, 26]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,23}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(2745, 728, F27, 23) (dual of [728, 683, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2756, 425, F27, 2, 25) (dual of [(425, 2), 794, 26]-NRT-code) | [i] | OOA Folding |