Information on Result #1317869
Linear OA(3243, 280, F3, 119) (dual of [280, 37, 120]-code), using construction X with Varšamov bound based on
- linear OA(3209, 241, F3, 119) (dual of [241, 32, 120]-code), using
- 3 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- linear OA(3212, 243, F3, 122) (dual of [243, 31, 123]-code), using an extension Ce(121) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,121], and designed minimum distance d ≥ |I|+1 = 122 [i]
- linear OA(3211, 243, F3, 121) (dual of [243, 32, 122]-code), using an extension Ce(120) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,120], and designed minimum distance d ≥ |I|+1 = 121 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(121) ⊂ Ce(120) [i] based on
- 3 times truncation [i] based on linear OA(3212, 244, F3, 122) (dual of [244, 32, 123]-code), using
- linear OA(3209, 246, F3, 98) (dual of [246, 37, 99]-code), using Gilbert–Varšamov bound and bm = 3209 > Vbs−1(k−1) = 3280 025660 724432 861902 795517 175496 939946 278136 097808 747925 109539 004631 027702 911317 149349 858805 611315 [i]
- linear OA(329, 34, F3, 20) (dual of [34, 5, 21]-code), using
- a “vE0†code from Brouwer’s database [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.