Information on Result #1320321
Linear OA(354, 108, F3, 26) (dual of [108, 54, 27]-code), using a “Gra†code from Grassl’s database
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(354, 108, F3, 25) (dual of [108, 54, 26]-code) | [i] | Strength Reduction | |
2 | Linear OA(354, 108, F3, 24) (dual of [108, 54, 25]-code) | [i] | ||
3 | Linear OA(354, 108, F3, 23) (dual of [108, 54, 24]-code) | [i] | ||
4 | Linear OA(354, 108, F3, 22) (dual of [108, 54, 23]-code) | [i] | ||
5 | Linear OA(355, 109, F3, 26) (dual of [109, 54, 27]-code) | [i] | Code Embedding in Larger Space | |
6 | Linear OA(356, 110, F3, 26) (dual of [110, 54, 27]-code) | [i] | ||
7 | Linear OA(357, 111, F3, 26) (dual of [111, 54, 27]-code) | [i] | ||
8 | Linear OA(358, 112, F3, 26) (dual of [112, 54, 27]-code) | [i] | ||
9 | Linear OA(359, 113, F3, 26) (dual of [113, 54, 27]-code) | [i] | ||
10 | Linear OA(360, 114, F3, 26) (dual of [114, 54, 27]-code) | [i] | ||
11 | Linear OA(353, 107, F3, 25) (dual of [107, 54, 26]-code) | [i] | Truncation | |
12 | Linear OA(352, 106, F3, 24) (dual of [106, 54, 25]-code) | [i] | ||
13 | Linear OA(351, 105, F3, 23) (dual of [105, 54, 24]-code) | [i] | ||
14 | Linear OA(350, 104, F3, 22) (dual of [104, 54, 23]-code) | [i] | ||
15 | Linear OA(349, 103, F3, 21) (dual of [103, 54, 22]-code) | [i] | ||
16 | Linear OA(348, 102, F3, 20) (dual of [102, 54, 21]-code) | [i] | ||
17 | Linear OA(347, 101, F3, 19) (dual of [101, 54, 20]-code) | [i] | ||
18 | Linear OA(346, 100, F3, 18) (dual of [100, 54, 19]-code) | [i] | ||
19 | Linear OA(345, 99, F3, 17) (dual of [99, 54, 18]-code) | [i] | ||
20 | Linear OA(367, 122, F3, 26) (dual of [122, 55, 27]-code) | [i] | (u, u+v)-Construction | |
21 | Linear OA(369, 129, F3, 26) (dual of [129, 60, 27]-code) | [i] | Varšamov–Edel Lengthening | |
22 | Linear OA(370, 132, F3, 26) (dual of [132, 62, 27]-code) | [i] | ||
23 | Linear OA(371, 135, F3, 26) (dual of [135, 64, 27]-code) | [i] | ||
24 | Linear OA(372, 139, F3, 26) (dual of [139, 67, 27]-code) | [i] | ||
25 | Linear OA(373, 143, F3, 26) (dual of [143, 70, 27]-code) | [i] | ||
26 | Linear OA(374, 147, F3, 26) (dual of [147, 73, 27]-code) | [i] | ||
27 | Linear OA(375, 152, F3, 26) (dual of [152, 77, 27]-code) | [i] | ||
28 | Linear OA(376, 158, F3, 26) (dual of [158, 82, 27]-code) | [i] | ||
29 | Linear OA(377, 164, F3, 26) (dual of [164, 87, 27]-code) | [i] | ||
30 | Linear OA(378, 170, F3, 26) (dual of [170, 92, 27]-code) | [i] | ||
31 | Linear OA(379, 177, F3, 26) (dual of [177, 98, 27]-code) | [i] | ||
32 | Linear OA(380, 184, F3, 26) (dual of [184, 104, 27]-code) | [i] | ||
33 | Linear OA(361, 116, F3, 26) (dual of [116, 55, 27]-code) | [i] | Construction X with Varšamov Bound | |
34 | Linear OA(364, 120, F3, 26) (dual of [120, 56, 27]-code) | [i] | ||
35 | Linear OA(362, 118, F3, 25) (dual of [118, 56, 26]-code) | [i] | ||
36 | Linear OA(365, 122, F3, 26) (dual of [122, 57, 27]-code) | [i] | ||
37 | Linear OA(363, 120, F3, 25) (dual of [120, 57, 26]-code) | [i] | ||
38 | Linear OA(368, 126, F3, 26) (dual of [126, 58, 27]-code) | [i] | ||
39 | Linear OA(369, 128, F3, 26) (dual of [128, 59, 27]-code) | [i] | ||
40 | Linear OA(371, 131, F3, 26) (dual of [131, 60, 27]-code) | [i] | ||
41 | Linear OOA(354, 54, F3, 2, 26) (dual of [(54, 2), 54, 27]-NRT-code) | [i] | OOA Folding |