Information on Result #1321274
Linear OA(3130, 172, F3, 56) (dual of [172, 42, 57]-code), using construction X with Varšamov bound based on
- linear OA(3129, 170, F3, 56) (dual of [170, 41, 57]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(3125, 164, F3, 56) (dual of [164, 39, 57]-code), using
- a “GraX†code from Grassl’s database [i]
- linear OA(3125, 166, F3, 53) (dual of [166, 41, 54]-code), using Gilbert–Varšamov bound and bm = 3125 > Vbs−1(k−1) = 175422 037112 556150 813347 307103 202139 373001 667482 984850 530931 [i]
- linear OA(32, 4, F3, 2) (dual of [4, 2, 3]-code or 4-arc in PG(1,3)), using
- extended Reed–Solomon code RSe(2,3) [i]
- Hamming code H(2,3) [i]
- Simplex code S(2,3) [i]
- the Tetracode [i]
- linear OA(3125, 164, F3, 56) (dual of [164, 39, 57]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(3129, 171, F3, 55) (dual of [171, 42, 56]-code), using Gilbert–Varšamov bound and bm = 3129 > Vbs−1(k−1) = 21 647486 479352 089240 558891 338908 844373 968201 419883 043410 326313 [i]
- linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.