Information on Result #1324142
Linear OA(4228, 1048654, F4, 28) (dual of [1048654, 1048426, 29]-code), using construction X with Varšamov bound based on
- linear OA(4225, 1048650, F4, 28) (dual of [1048650, 1048425, 29]-code), using
- 1 times truncation [i] based on linear OA(4226, 1048651, F4, 29) (dual of [1048651, 1048425, 30]-code), using
- construction X applied to Ce(28) ⊂ Ce(20) [i] based on
- linear OA(4211, 1048576, F4, 29) (dual of [1048576, 1048365, 30]-code), using an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 410−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(4151, 1048576, F4, 21) (dual of [1048576, 1048425, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 410−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(415, 75, F4, 7) (dual of [75, 60, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(415, 85, F4, 7) (dual of [85, 70, 8]-code), using
- construction X applied to Ce(28) ⊂ Ce(20) [i] based on
- 1 times truncation [i] based on linear OA(4226, 1048651, F4, 29) (dual of [1048651, 1048425, 30]-code), using
- linear OA(4225, 1048651, F4, 25) (dual of [1048651, 1048426, 26]-code), using Gilbert–Varšamov bound and bm = 4225 > Vbs−1(k−1) = 1 423072 150412 636387 036637 764552 218908 154717 981249 998054 144591 515161 012680 168427 035153 324128 086486 812233 457411 000364 551483 729118 645156 [i]
- linear OA(42, 3, F4, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,4)), using
- dual of repetition code with length 3 [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4228, 524327, F4, 2, 28) (dual of [(524327, 2), 1048426, 29]-NRT-code) | [i] | OOA Folding |