Information on Result #1362972
Linear OOA(3242, 1103, F3, 2, 51) (dual of [(1103, 2), 1964, 52]-NRT-code), using OOA 2-folding based on linear OA(3242, 2206, F3, 51) (dual of [2206, 1964, 52]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(3240, 2203, F3, 51) (dual of [2203, 1963, 52]-code), using
- construction X applied to C([0,25]) ⊂ C([0,24]) [i] based on
- linear OA(3239, 2188, F3, 51) (dual of [2188, 1949, 52]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,25], and minimum distance d ≥ |{−25,−24,…,25}|+1 = 52 (BCH-bound) [i]
- linear OA(3225, 2188, F3, 49) (dual of [2188, 1963, 50]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,24], and minimum distance d ≥ |{−24,−23,…,24}|+1 = 50 (BCH-bound) [i]
- linear OA(31, 15, F3, 1) (dual of [15, 14, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to C([0,25]) ⊂ C([0,24]) [i] based on
- linear OA(3240, 2204, F3, 49) (dual of [2204, 1964, 50]-code), using Gilbert–Varšamov bound and bm = 3240 > Vbs−1(k−1) = 399116 962455 297626 298189 158946 817693 827423 977885 629847 509890 451156 512270 343574 616567 537457 603917 576042 729531 145659 [i]
- linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s (see above)
- linear OA(3240, 2203, F3, 51) (dual of [2203, 1963, 52]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.