Information on Result #1365104
Linear OOA(4219, 524328, F4, 2, 27) (dual of [(524328, 2), 1048437, 28]-NRT-code), using OOA 2-folding based on linear OA(4219, 1048656, F4, 27) (dual of [1048656, 1048437, 28]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4216, 1048652, F4, 27) (dual of [1048652, 1048436, 28]-code), using
- construction X applied to C([0,13]) ⊂ C([0,9]) [i] based on
- linear OA(4201, 1048577, F4, 27) (dual of [1048577, 1048376, 28]-code), using the expurgated narrow-sense BCH-code C(I) with length 1048577 | 420−1, defining interval I = [0,13], and minimum distance d ≥ |{−13,−12,…,13}|+1 = 28 (BCH-bound) [i]
- linear OA(4141, 1048577, F4, 19) (dual of [1048577, 1048436, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 1048577 | 420−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- linear OA(415, 75, F4, 7) (dual of [75, 60, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(415, 85, F4, 7) (dual of [85, 70, 8]-code), using
- construction X applied to C([0,13]) ⊂ C([0,9]) [i] based on
- linear OA(4216, 1048653, F4, 24) (dual of [1048653, 1048437, 25]-code), using Gilbert–Varšamov bound and bm = 4216 > Vbs−1(k−1) = 10 857123 643294 049768 057150 883313 310727 122807 343457 659303 482536 811682 533672 526978 818693 571590 009140 873205 445290 759226 509693 288296 [i]
- linear OA(42, 3, F4, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,4)), using
- dual of repetition code with length 3 [i]
- linear OA(4216, 1048652, F4, 27) (dual of [1048652, 1048436, 28]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.