Information on Result #1365813
Linear OOA(4219, 8221, F4, 2, 39) (dual of [(8221, 2), 16223, 40]-NRT-code), using OOA 2-folding based on linear OA(4219, 16442, F4, 39) (dual of [16442, 16223, 40]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4218, 16440, F4, 39) (dual of [16440, 16222, 40]-code), using
- construction X applied to Ce(38) ⊂ Ce(30) [i] based on
- linear OA(4204, 16384, F4, 39) (dual of [16384, 16180, 40]-code), using an extension Ce(38) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,38], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(4162, 16384, F4, 31) (dual of [16384, 16222, 32]-code), using an extension Ce(30) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(414, 56, F4, 7) (dual of [56, 42, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(414, 65, F4, 7) (dual of [65, 51, 8]-code), using
- a “GraXX†code from Grassl’s database [i]
- discarding factors / shortening the dual code based on linear OA(414, 65, F4, 7) (dual of [65, 51, 8]-code), using
- construction X applied to Ce(38) ⊂ Ce(30) [i] based on
- linear OA(4218, 16441, F4, 38) (dual of [16441, 16223, 39]-code), using Gilbert–Varšamov bound and bm = 4218 > Vbs−1(k−1) = 30608 113531 797284 601784 571884 669503 682514 497825 036595 402056 797005 343400 160583 429235 706272 965901 909484 812086 850443 715464 085123 651921 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(4218, 16440, F4, 39) (dual of [16440, 16222, 40]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.