Information on Result #1370886
Linear OOA(572, 39081, F5, 2, 12) (dual of [(39081, 2), 78090, 13]-NRT-code), using OOA 2-folding based on linear OA(572, 78162, F5, 12) (dual of [78162, 78090, 13]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(571, 78160, F5, 12) (dual of [78160, 78089, 13]-code), using
- construction X applied to Ce(11) ⊂ Ce(6) [i] based on
- linear OA(564, 78125, F5, 12) (dual of [78125, 78061, 13]-code), using an extension Ce(11) of the primitive narrow-sense BCH-code C(I) with length 78124 = 57−1, defining interval I = [1,11], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(536, 78125, F5, 7) (dual of [78125, 78089, 8]-code), using an extension Ce(6) of the primitive narrow-sense BCH-code C(I) with length 78124 = 57−1, defining interval I = [1,6], and designed minimum distance d ≥ |I|+1 = 7 [i]
- linear OA(57, 35, F5, 4) (dual of [35, 28, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(57, 44, F5, 4) (dual of [44, 37, 5]-code), using
- construction X applied to Ce(11) ⊂ Ce(6) [i] based on
- linear OA(571, 78161, F5, 11) (dual of [78161, 78090, 12]-code), using Gilbert–Varšamov bound and bm = 571 > Vbs−1(k−1) = 2 457232 375386 571927 384568 086699 247212 011322 051265 [i]
- linear OA(50, 1, F5, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(50, s, F5, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(571, 78160, F5, 12) (dual of [78160, 78089, 13]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.