Information on Result #1372379
Linear OOA(795, 411795, F7, 2, 15) (dual of [(411795, 2), 823495, 16]-NRT-code), using OOA 2-folding based on linear OA(795, 823590, F7, 15) (dual of [823590, 823495, 16]-code), using
- discarding factors / shortening the dual code based on linear OA(795, 823591, F7, 15) (dual of [823591, 823496, 16]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(792, 823585, F7, 15) (dual of [823585, 823493, 16]-code), using
- construction X applied to Ce(14) ⊂ Ce(8) [i] based on
- linear OA(785, 823543, F7, 15) (dual of [823543, 823458, 16]-code), using an extension Ce(14) of the primitive narrow-sense BCH-code C(I) with length 823542 = 77−1, defining interval I = [1,14], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(750, 823543, F7, 9) (dual of [823543, 823493, 10]-code), using an extension Ce(8) of the primitive narrow-sense BCH-code C(I) with length 823542 = 77−1, defining interval I = [1,8], and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(77, 42, F7, 5) (dual of [42, 35, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(77, 43, F7, 5) (dual of [43, 36, 6]-code), using
- construction X applied to Ce(14) ⊂ Ce(8) [i] based on
- linear OA(792, 823588, F7, 14) (dual of [823588, 823496, 15]-code), using Gilbert–Varšamov bound and bm = 792 > Vbs−1(k−1) = 168216 745625 373109 205703 774249 876477 893154 370957 720507 283141 352369 217490 712151 [i]
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(792, 823585, F7, 15) (dual of [823585, 823493, 16]-code), using
- construction X with Varšamov bound [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.