Information on Result #1374890
Linear OOA(8112, 131092, F8, 2, 20) (dual of [(131092, 2), 262072, 21]-NRT-code), using OOA 2-folding based on linear OA(8112, 262184, F8, 20) (dual of [262184, 262072, 21]-code), using
- discarding factors / shortening the dual code based on linear OA(8112, 262185, F8, 20) (dual of [262185, 262073, 21]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(8110, 262181, F8, 20) (dual of [262181, 262071, 21]-code), using
- construction X applied to Ce(19) ⊂ Ce(13) [i] based on
- linear OA(8103, 262144, F8, 20) (dual of [262144, 262041, 21]-code), using an extension Ce(19) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(873, 262144, F8, 14) (dual of [262144, 262071, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(87, 37, F8, 5) (dual of [37, 30, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(87, 57, F8, 5) (dual of [57, 50, 6]-code), using
- construction X applied to Ce(19) ⊂ Ce(13) [i] based on
- linear OA(8110, 262183, F8, 19) (dual of [262183, 262073, 20]-code), using Gilbert–Varšamov bound and bm = 8110 > Vbs−1(k−1) = 8 710161 600991 020368 688753 382132 765152 720519 279504 588499 234014 466053 973854 027834 089049 412081 126492 [i]
- linear OA(80, 2, F8, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(8110, 262181, F8, 20) (dual of [262181, 262071, 21]-code), using
- construction X with Varšamov bound [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.