Information on Result #1377838
Linear OOA(9130, 2391494, F9, 2, 21) (dual of [(2391494, 2), 4782858, 22]-NRT-code), using OOA 2-folding based on linear OA(9130, 4782988, F9, 21) (dual of [4782988, 4782858, 22]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9128, 4782985, F9, 21) (dual of [4782985, 4782857, 22]-code), using
- construction X applied to C([0,10]) ⊂ C([0,9]) [i] based on
- linear OA(9127, 4782970, F9, 21) (dual of [4782970, 4782843, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 4782970 | 914−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound) [i]
- linear OA(9113, 4782970, F9, 19) (dual of [4782970, 4782857, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 4782970 | 914−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- linear OA(91, 15, F9, 1) (dual of [15, 14, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(91, s, F9, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to C([0,10]) ⊂ C([0,9]) [i] based on
- linear OA(9128, 4782986, F9, 19) (dual of [4782986, 4782858, 20]-code), using Gilbert–Varšamov bound and bm = 9128 > Vbs−1(k−1) = 4 828890 942726 932447 571307 355567 992337 596679 456013 874802 826099 723457 681596 747962 209124 684963 606369 698065 684470 388523 359561 [i]
- linear OA(91, 2, F9, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(91, s, F9, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s (see above)
- linear OA(9128, 4782985, F9, 21) (dual of [4782985, 4782857, 22]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.