Information on Result #1378092
Linear OOA(9105, 6567, F9, 2, 26) (dual of [(6567, 2), 13029, 27]-NRT-code), using OOA 2-folding based on linear OA(9105, 13134, F9, 26) (dual of [13134, 13029, 27]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(9104, 13132, F9, 26) (dual of [13132, 13028, 27]-code), using
- trace code [i] based on linear OA(8152, 6566, F81, 26) (dual of [6566, 6514, 27]-code), using
- construction X applied to Ce(25) ⊂ Ce(23) [i] based on
- linear OA(8151, 6561, F81, 26) (dual of [6561, 6510, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(8147, 6561, F81, 24) (dual of [6561, 6514, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(811, 5, F81, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(811, s, F81, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to Ce(25) ⊂ Ce(23) [i] based on
- trace code [i] based on linear OA(8152, 6566, F81, 26) (dual of [6566, 6514, 27]-code), using
- linear OA(9104, 13133, F9, 25) (dual of [13133, 13029, 26]-code), using Gilbert–Varšamov bound and bm = 9104 > Vbs−1(k−1) = 5 156573 588554 532887 740450 066001 614856 140581 340273 089180 466540 468028 761346 162016 642401 768011 999969 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(9104, 13132, F9, 26) (dual of [13132, 13028, 27]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.