Information on Result #1381365
Linear OOA(25106, 195331, F25, 2, 26) (dual of [(195331, 2), 390556, 27]-NRT-code), using OOA 2-folding based on linear OA(25106, 390662, F25, 26) (dual of [390662, 390556, 27]-code), using
- discarding factors / shortening the dual code based on linear OA(25106, 390663, F25, 26) (dual of [390663, 390557, 27]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(25105, 390661, F25, 26) (dual of [390661, 390556, 27]-code), using
- construction X applied to Ce(25) ⊂ Ce(17) [i] based on
- linear OA(2597, 390625, F25, 26) (dual of [390625, 390528, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 390624 = 254−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(2569, 390625, F25, 18) (dual of [390625, 390556, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 390624 = 254−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(258, 36, F25, 7) (dual of [36, 28, 8]-code), using
- extended algebraic-geometric code AGe(F,28P) [i] based on function field F/F25 with g(F) = 1 and N(F) ≥ 36, using
- construction X applied to Ce(25) ⊂ Ce(17) [i] based on
- linear OA(25105, 390662, F25, 25) (dual of [390662, 390557, 26]-code), using Gilbert–Varšamov bound and bm = 25105 > Vbs−1(k−1) = 342972 885963 262439 982187 844285 980865 912948 856532 085852 929865 455465 135795 795199 414287 961085 022734 377761 527966 923317 395189 162066 472885 941767 820025 [i]
- linear OA(250, 1, F25, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(25105, 390661, F25, 26) (dual of [390661, 390556, 27]-code), using
- construction X with Varšamov bound [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.