Information on Result #1384638
Linear OOA(32108, 535, F32, 2, 52) (dual of [(535, 2), 962, 53]-NRT-code), using OOA 2-folding based on linear OA(32108, 1070, F32, 52) (dual of [1070, 962, 53]-code), using
- 35 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 0, 0, 0, 1, 9 times 0, 1, 18 times 0) [i] based on linear OA(32100, 1027, F32, 52) (dual of [1027, 927, 53]-code), using
- construction XX applied to C1 = C([1022,49]), C2 = C([0,50]), C3 = C1 + C2 = C([0,49]), and C∩ = C1 ∩ C2 = C([1022,50]) [i] based on
- linear OA(3298, 1023, F32, 51) (dual of [1023, 925, 52]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,49}, and designed minimum distance d ≥ |I|+1 = 52 [i]
- linear OA(3298, 1023, F32, 51) (dual of [1023, 925, 52]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,50], and designed minimum distance d ≥ |I|+1 = 52 [i]
- linear OA(32100, 1023, F32, 52) (dual of [1023, 923, 53]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,50}, and designed minimum distance d ≥ |I|+1 = 53 [i]
- linear OA(3296, 1023, F32, 50) (dual of [1023, 927, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,49]), C2 = C([0,50]), C3 = C1 + C2 = C([0,49]), and C∩ = C1 ∩ C2 = C([1022,50]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.